ANSWERS AND EXPLANATIONS

1. Ans. (c)

For submerged soils, effective stress does not change with change in depth of water table.
2. Ans. (c)

$\mathbf{I}_{\mathbf{C}}$	Soil
<0	Liquid
$0-0.25$	Very-soft
$0.25-0.50$	Soft
$0.50-0.75$	Medium stiff
$0.75-1.00$	Stiff
>1	Very stiff

3. Ans. (c)

Clay has three types of mineral

- Kaolinite
- Illite
- Montmorillonite

4. Ans. (d)
5. Ans. (a)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{p}} & =\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{p}} \\
\text { Plastic limit } & =\mathrm{w}_{\mathrm{L}}-\mathrm{I}_{\mathrm{p}} \\
\text { With } \quad \mathrm{w}_{\mathrm{L}} & =\text { Constant } \\
\mathrm{I}_{\mathrm{p}} & =\text { Increasing } \\
\mathrm{w}_{\mathrm{p}} & =\text { Decreasing }
\end{aligned}
$$

It means soil is coarse, so permeability increase.
6. Ans. (a)

Montmorillonite shows the plastic behavior of soil. Specific gravity is property due to Iron and Mica.
7. Ans. (b)

As code is IS : 460: 1962
8. Ans. (d)

Particle size analysis is ultimately shown by a curve between $\%$ fine (on y-axis) and size (on x -axis)
9. Ans. (a)

Black cotton soils show maximum volume change due to the mineral present in it that is montmorillonite.
10. Ans. (c)

An Isobar is a line which has points of equal vertical stresses.
11. Ans. (a)

$$
\text { Where, } \begin{aligned}
\mathrm{V}_{\mathrm{n}} & =\frac{\mathrm{V}}{\mathrm{n}} \\
\mathrm{~V}_{\mathrm{n}} & =\text { Seepage velocity } \\
\mathrm{V} & =\text { Discharge velocity } \\
\mathrm{n} & =\text { Porosity }=\frac{\mathrm{e}}{1+\mathrm{e}} \\
\mathrm{n} & =\frac{0.5}{1+0.5}=\frac{1}{3}=0.33 \\
\mathrm{~V}_{\mathrm{n}} & =\frac{6 \times 10^{-7}}{0.33}=18 \times 10^{-7} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

12. Ans. (b)

Mass specific gravity

$$
\begin{aligned}
\rho_{\mathrm{m}} & =1.35 \\
\mathrm{G} & =2.7
\end{aligned}
$$

Soil is dry
So, $\quad \rho_{\mathrm{m}}=\rho_{\mathrm{d}}=\frac{\mathrm{G} \rho_{\mathrm{w}}}{1+\mathrm{e}}$

$$
\begin{aligned}
1.35 & =\frac{2.7 \times 1}{1+e} \\
e & =1
\end{aligned}
$$

13. Ans. (a)

Liquid limit $=40 \%$.
Plasticity index $=20 \%$
Plastic limit $=$ Liquid limit - Plasticity Index
Plastic limit $=40 \%-20 \%=20 \%$
14. Ans. (d)

Shear failure of soils consists of

- Sliding of land mass
- Finite slope failure
- Failure of soil below building foundation.

15. Ans. (a)

For clay it is $16 \%-17 \%$
For silt it is $6 \%-8 \%$
For sand it is < 1%
16. Ans. (a)

$$
\begin{aligned}
\text { F.O.S } & =\frac{\tan \phi}{\tan \phi_{\mathrm{m}}} \\
& =\frac{\tan 45^{\circ}}{\tan 30^{\circ}}=\frac{1}{1 / \sqrt{3}} \\
\text { F.O.S. } & =\sqrt{3}=1.732
\end{aligned}
$$

17. Ans. (a)
18. Ans. (a)
19. Ans. (c)

As per IS : 800-2007 clause 3.7.2(c)
20. Ans. (c)
21. Ans. (d)

$$
\mathrm{k}=\frac{3 \mathrm{~A}_{1}}{3 \mathrm{~A}_{1}+\mathrm{A}_{2}}
$$

22. Ans. (a)

As per IS : 800-2007
23. Ans. (d)

Box section has maximum polar moment of inertia for the given area.
24. Ans. (a)
25. Ans. (b)

For broad and meter gauge with single track impact factor

$$
=0.15+\frac{8}{6+L}
$$

Subjected to maximum of ' L '
For $\quad L=6 \mathrm{~m}$
Impact factor $=0.15+\frac{8}{12}=0.82$
So, for option, answer can be 0.75 (the closest one)
26. Ans. (b)

Effective length of weld $=$ Total length -2 s
27. Ans. (a)
28. Ans. (c)
29. Ans. (a)

The accuracy is more in shop rivets than field rivets.
30. Ans. (c)

Throat thickness

$$
\begin{gathered}
\mathrm{t}_{\mathrm{t}}=\frac{l}{\sqrt{3}} \mathrm{~s} \\
\frac{\text { Size }}{\text { Throat - thickness }}=\frac{\mathrm{s}}{\mathrm{~s} / \sqrt{2}} \\
=\sqrt{2}: 1
\end{gathered}
$$

31. Ans. (b)

Lateral deflection are called "sway".
32. Ans. (b)

For two hinged semicircular arch with load 'w' applied at any section, the radius vector θ with the horizontal.

$$
\mathrm{H}=\frac{\mathrm{w}}{\pi} \sin ^{2} \theta
$$

with load at crown.

$$
\begin{aligned}
& \theta=\frac{\pi}{2} \\
\text { So, } & \mathrm{H}
\end{aligned}=\frac{\mathrm{w}}{\pi}
$$

33. Ans. (c)
34. Ans. (d)

$$
\begin{aligned}
& \Sigma \mathrm{f}_{\mathrm{x}}=0 ; \Sigma \mathrm{M}_{\mathrm{x}}=0 \\
& \Sigma \mathrm{f}_{4}=0 ; \Sigma \mathrm{M}_{4}=0 \\
& \Sigma \mathrm{f}_{2}=0 ; \Sigma \mathrm{M}_{2}=0
\end{aligned}
$$

35. Ans. (b)
36. Ans. (a)

Force or flexibility method cases redundant forces while stiffness or displacement method of analysis uses degrees of freedom.
37. Ans. (a)
38. Ans. (c)

$$
\begin{aligned}
\text { Internal } & =3 \mathrm{a} \\
\mathrm{a} & =\text { Number of loops }=0 \\
\text { Internal } & =0 \\
\text { External } & =\mathrm{R}-\mathrm{r} \\
\mathrm{R} & =3+3=6 \\
\mathrm{r} & =3 \\
\mathrm{E} & =6-3=3
\end{aligned}
$$

Sq. static indeterminacy

$$
\begin{aligned}
S & =I+E \\
& =0+3=3
\end{aligned}
$$

39. Ans. (b)
40. Ans. (c)

28 -days strength of concrete is 90% of it's one year strength.
41. Ans. (a)
42. Ans. (a)

Air entrainment in concrete

- Reduces strength
- Increases workability

43. Ans. (c)

Deflection is less in doubly beams as compared to singly Reinforced beams of same size.
44. Ans. (d)

When $\quad \tau_{v}>\tau_{\text {cmax }}$
Diagonal compression failure occurs.
45. Ans. (c)

As per IS : 456-2000
L_{p} length $\geq L_{d}$ or 24ϕ
46. Ans. (d)

All the factors affect bond strength.
47. Ans. (b)

As per IS : 456-2000, Clause 31.4.3.2
48. Ans. (d)
49. Ans. (d)

Due to unsymmetric section.
50. Ans. (c)

For beam, it is $\frac{85}{\mathrm{f}_{\mathrm{y}}} \%$
For slab, it is 0.12%

ENGINEERS ACADEMY

